THE FOUNDATIONS OF FINITE CONDITIONAL PROBABILITY *

B
Roberto S. Mariano

1. Introduction: The axiomatization of the theory of probability is not a new subject in mathematics. Many have tried, and successfully so, to set forth in an axiom system the theory of probability. However, in the majority of these attempts, the concept of the probability of an event has been invariably considered as one of the primitive undefined notions of the axiom system.

In this paper, we shall try to establish the axiomatic foundation of the theory of probability concerning finite sample spaces on a more general notion - that of the conditional probability of an event. More general in that from the theory developed with this concept as a primitive undefined notion, we can casily derive the elcmentary theory of probability ordinarily established by considering the probability of an event as one of the primitive undefined notions. The simple derivation will be shown in the later part of the paper.

Also, as is natural for studies of this nature, some metamathematical considerations of the adopted axiom system will be given.
2. Primitive Notion. We consider the following as the primitive undefined notions of our axiom system:

1. The sample space, which we shall designate by a finite nonempty set S.
2. A set of possible events, represented by F, a family of subsets of S.

[^0]3. A real-valued function $p\left(A_{1}, A_{j}\right)$ defined on $F \times F$ for A_{i} and A_{j} belonging to F. This real-valued function is what we call the conditional probability of A_{i} given A_{j}. It must be noted that $p\left(A_{i}, A_{j}\right)$ is not necessarily equal to $p\left(A_{j} ; A_{i}\right)$.
3. Axioms. If S is the sample space, F a family of subsets of S and p a real-valued function defined on $F \times F$, a set function structure $X=\langle S, F, p\rangle$ is a finite conditional probability space if and only if:

1. F is a field. A family of sets, F is a field if and only if:
a. For A in F, the complement of A, \ddot{A} is also in F.
b. For n sets belonging to F, the intersection of any number of these sets belongs to F .
c. For n sets belonging to F, the union of any number of these sets belongs 10 F .
2. For any non-empty set A in $F, p(A, A)=1$.
3. For any tro sets A_{i} and A_{j} in $F, p\left(A_{i}, A_{j}\right) \geq 0$.
4. $p\left(A_{i}, A_{j}\right) \leq 1$.
5. For two matualiy exclusivo sots, A_{1} and A_{j} in F, $p\left(\Lambda_{i} \cup \Lambda_{j}, \Lambda\right)=p\left(\Lambda_{i}, A\right)+p\left(A_{j}, A\right)$, for $A \ln F$.
6. Consistency of the Axioms. To prove the consistency of the axioms that we have just set u p, it is sufficient to show that a model can be constructed where all these axions are simultancously satisfied.

Denoting the sample space by S, let $S=\{a, b\}$,
that is, since as we have said before, we consider the sample
space as a set of elements, we let $\underset{a}{a}$ and \underline{b} be the clements of the set S . Denoting by F , a family of subsets of S , let
$F=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, where $A_{1}=\{a\}$,
$A_{2}=\{b\}, A_{3}=\{a, b\}, A_{4}=$. Furthermore, for
A_{1} and A_{j} belonging to F, let a real-valued function $p\left(A_{i}, A_{j}\right)$ be defined on $F \times F$ such that:

$$
\begin{array}{ll}
p\left(A_{1}, A_{1}\right)=1 & p\left(A_{3}, A_{1}\right)=1 \\
p\left(A_{1}, A_{2}\right)=0 & p\left(A_{3}, A_{2}\right)=1 \\
p\left(A_{1}, A_{3}\right)=1 / 2 & p\left(A_{3}, A_{3}\right)=1 \\
p\left(A_{1}, A_{4}\right)=0 & p\left(A_{3}, A_{4}\right)=0 \\
p\left(A_{2}, A_{1}\right)=0 & p\left(A_{4}, A_{1}\right)=0 \\
p\left(A_{2}, A_{2}\right)=1 & p\left(A_{4}, A_{2}\right)=0 \\
p\left(A_{2}, A_{3}\right)=1 / 7 & p\left(A_{4}, A_{3}\right)=0 . \\
p\left(A_{2}, A_{4}\right)=0 & \left(p\left(A_{4}, A_{4}\right)=0\right.
\end{array}
$$

F, the family of subsets of S, with the function $p\left(A_{i}, A_{j}\right)$ defined on $F \times F$, is our model.

The first lour axioms are evidently satisfied by our model. To show that axiom 5 is satisfied by this model, we have to show that the formula in axiom five holds for the following pairs of subsets of S, which are the only mutually exclusive subsets of S : A_{1} and A_{2}, A_{i} and A_{4}, A_{2} and A_{4}, A_{3} and A_{4}, A_{4} and A_{4}

$$
\begin{aligned}
& \text { for } A_{1} \cup A_{2} \text {, since } A_{1} V A_{2}=A_{3} \text {, } \\
& p\left(A_{1} \cup A_{2}, A_{1}\right)=p\left(A_{3}, A_{1}\right)=1=1+0=p\left(A_{1}, A_{1}\right)+p\left(A_{2}, A_{1}\right) . \\
& p\left(A_{1} \cup A_{2}, A_{2}\right)=p\left(A_{3}, A_{2}\right) \times 1=0+1=p\left(A_{1}, A_{2}\right)+p\left(A_{2}, A_{2}\right) . \\
& p\left(A_{1} \cup A_{2}, A_{3}\right)=p\left(A_{3}, A_{3}\right)=1=1 / 2+1 / 2=p\left(A_{1}, A_{3}\right)+p\left(A_{2}, A_{3}\right) . \\
& p\left(A_{2} \cup A_{2}, A_{4}\right)=p\left(A_{3}, A_{4}\right)-0=0+0=p\left(A_{1}, A_{4}\right)+p\left(A_{2}, A_{4}\right) . \\
& \text { For } A_{3} \cup A_{L}, \quad 1=1,2,3,4 \text {, since } A_{1} \cup A_{i}=A_{1} \\
& \text { and } p\left(A_{1} ; A_{i}\right)=0 \text {, } \\
& p\left(A_{i} \cup A_{2}, A_{1}\right)=p\left(A_{1}, A_{1}\right)=p\left(A_{1}, A_{1}\right)+p\left(A_{1}, \hat{A}_{1}\right) . \\
& p\left(A_{1} \cup A_{L}, A_{2}\right)=p\left(A_{1}, i_{2}\right)=F\left(A_{1}, A_{2}\right)+p\left(A_{L}, A_{2}\right) . \\
& p\left(A_{i} \cup A_{2}, A_{3}\right)=p\left(A_{1}, A_{3}\right)=p\left(A_{1}, A_{3}\right)+p\left(A_{4}, A_{3}\right) . \\
& p\left(A_{1} \cup A_{L}, A_{L}\right)=p\left(\Lambda_{1}, A_{L}\right)=p\left(A_{1}, A_{L}\right)+p\left(A_{1}, A_{L}\right) .
\end{aligned}
$$

From these above equalities we sec that the formula in axiom 5 holds for the above mentioned pairs of mutually exclusive subsets of S . Since commutativity holds for the union of two sets, that is, for two sets A and $B, A \cup B=B \cup A$, axiom 5 also holds evidently for the commuted forms of the unions of the above mentioned pairs.
5. Independence of the Axioms. In order to establish the independence of a particular axiom in our system we have to construct a model which simultancous satisfies the negation of that particular axiom and also the four other axioms. We shall do that now for each of our five axioms.

To show the independence of axiom 1 in our system, let ,ur model be the following:

1. $F_{1}=\left\{A_{1}, A_{2}, A_{3}\right\}$, with A_{1}, A_{2}, and A_{3} as defined before,
2. A function $f\left(A_{1}, A_{j}\right)$ defined on $F_{I} \times F_{1}$ such that:

$$
\begin{array}{ll}
f\left(A_{1}, A_{1}\right)=1 & f\left(A_{2}, A_{3}\right)=1 / 2 \\
f\left(A_{1}, A_{2}\right)=0 & f\left(A_{3}, A_{3}\right)=1 \\
f\left(A_{1}, A_{3}\right)=1 / 2 & f\left(A_{3}, A_{2}\right)=1 \\
f\left(A_{2}, A_{1}\right)=0 & f\left(A_{3}, A_{1}\right)=1
\end{array}
$$

Evidently, the second, third, and fourth axioms and the negaton of the first are satisfied by this model. The satisfaction of the fifth axiom is verified in the pertinent equalities containe in the later part of the previous section.

To verify the independence of axiom 2, let our model in this case be the following:

1. F, a family of subsets of S as defined in the previous section, and
2. A real-valucd function defined on $F \times F$, denoted by $g\left(A_{1}, A_{j}\right)$, for A_{i} and A_{i} in F, whose values are the same as those of $p\left(A_{i}, A_{j}\right)$ bull for the following:

$$
\begin{array}{ll}
g\left(A_{1}, A_{1}\right)=2 / 3 & g\left(A_{3}, A_{2}\right)=2 / 3 \\
g\left(A_{2}, A_{2}\right)=2 / 3 & g\left(A_{1}, A_{3}\right)=1 / 3 \\
g\left(A_{3}, A_{3}\right)=2 / 3 & g\left(A_{2}, A_{3}\right)=1 / 3 \\
g\left(A_{3}, A_{1}\right)=2 / 3 &
\end{array}
$$

Again it is evident that the first, third, and fourth axioms and the negation of the second are satisfied by this model. noting that

$$
\begin{aligned}
g\left(A_{3}, A_{1}\right) & =g\left(A_{1} \cup A_{2}, A_{1}\right)=2 / 3=2 / 3+0 \\
& =g\left(A_{1}, A_{1}\right)+g\left(A_{2}, A_{1}\right), \\
g\left(A_{3}, A_{2}\right) & =g\left(A_{1} \cup A_{2}, A_{2}\right)=2 / 3=2 / 3+0 \\
& =g\left(A_{2}, A_{2}\right)+g\left(A_{1}, A_{2}\right), \\
g\left(A_{3}, A_{3}\right) & =g\left(A_{1} \cup A_{2}, A_{3}\right)=2 / 3=1 / 3+1 / 3 \\
& =g\left(A_{1}, A_{3}\right)+g\left(A_{2}, A_{3}\right),
\end{aligned}
$$

and referring to the pertinent equalities in the previous section, we sec that this model also satisties the fifth axiom.

In the case of the third axiom, let our model be the following:

1. F, a family of subsets of S whose elements are as defined before.
2. A real valued function defined on $F \times F, h\left(A_{i} A_{j}\right)$, for A_{i} and Λ_{j} in F, whose values are the same as those of $p\left(A_{i}, A_{j}\right)$ but for the following:

$$
\begin{aligned}
& h\left(A_{1}, A_{4}\right)=-1 \\
& h\left(A_{2}, A_{4}\right)=-1 \\
& \overbrace{3}\left(A_{4} A_{4}\right)=-2 .
\end{aligned}
$$

PHILIPPINE STATISTICIAN - MARCH, 1962

Evidently, the first, second, and fourth axioms and the negation of the third are sastified by this model. The pertinent equalities in the previous section and the fact that

$$
\begin{aligned}
h\left(A_{1} \cup A_{2}, A_{4}\right) & =h\left(A_{3}, A_{4}\right)=-2=(-1)+(-1) \\
& =h\left(A_{1}, A_{4}\right)+h\left(A_{2}, A_{4}\right)
\end{aligned}
$$

show that the fifth axiom is satisfied by this model. These facts cstablish the independence of the third axiom in our system.

To show the independence of axiom 4 in our system, let our model be the following:

1. F, a field of subsets of S as defined before.
2. A real-valued function defined on $F \times F, u\left(\lambda_{i}, A_{j}\right)$, for A_{i} and A_{j} in F, whose values are same as those of $p\left(A_{i}, A_{j}\right)$ but for the following:

$$
\begin{aligned}
& u\left(A_{1}, A_{4}\right)=2 \\
& u\left(A_{2}, A_{4}\right)=2 \\
& u\left(A_{3}, A_{4}\right)=4 .
\end{aligned}
$$

By inspection, we see that this model satisfies the first three axioms and the negation of the fourth. Noting the cqualities in the previous section and the fact that

$$
\begin{aligned}
u\left(A_{2} \cup A_{2}, A_{4}\right) & =u\left(A_{3}, A_{4}\right)=4=2+2 \\
& =u\left(A_{1}, A_{4}\right)+u\left(A_{2}, A_{4}\right),
\end{aligned}
$$

we also see that the fifth axion is satisfied.

To prove the independence of axiom 5 in our system, let the following be our model:

1. The same F and S as in the previous cases.
2. A real-calued function $v\left(A_{i}, A_{j}\right)$ defined on $F \times F$ for any A_{j} and A_{j} in F, whose values are the same as those of $p\left(A_{i}, A_{j}\right)$ cxecpl for the following:

$$
v\left(A_{3}, A_{4}\right)=1
$$

This model satisfies the first four axioms, as can be verified by an inspection of the values of the faction defined. Furthermore, since

$$
\begin{aligned}
v\left(A_{1} \cup A_{2}, A_{4}\right) & =v\left(A_{3}, A_{4}\right)=1 \\
& \nLeftarrow\left[v\left(A_{1}, A_{4}\right)+v\left(A_{2}, A_{4}\right)=0\right]
\end{aligned}
$$

the negation of the fifth axiom is satisfied by the model and hence the independence of the fifth axiom in our axiom system is established.
6. Consequences of the Axioms, Let us now consider the theorems that we can infer from the axioms. Unless otherwise stated, we shall presuppose as given in all these theorems a finite nonempty sample space S, a field of subsets of S, denoted by F, and a real valued function $P\left(A_{i}, A_{j}\right)$ defined on $F \times F$ for and A_{i} and A_{j} in F.

THEOREM 1. For any A_{1} in F,

$$
p\left(\phi, A_{i}\right)=0 \text { and } p\left(A_{i}, S\right)+p\left(\bar{A}_{i}, S\right)=1
$$

Proof:
a. Since for any A_{j} in $F, A_{j} \cup=A_{j}$ and $A_{j} \cap p=$ i, then, by axiom 5 $p\left(A_{j} \cup \psi, A_{1}\right)=p\left(A_{j}, A_{i}\right)=p\left(A_{j}, A_{i}\right)+p\left(\hat{\psi}, A_{i}\right)$ which implies that $p\left(\phi, A_{j}\right)=0$, for the last equally to hold. Q.E.D.
b. Since $A_{i} \cup \bar{A}_{i}=S$ and $A_{i} \cap \bar{A}_{i}=\hat{F}$,
$p\left(A_{i} \cup \bar{A}_{i}, S\right)=p(S, S)=p\left(A_{i}, S\right)+p\left(\bar{A}_{i}, S\right)$, by axiom 5. But by axiom 2, $p(S, S)=1$, which implies that

$$
p\left(\bar{A}_{1}, S\right)+p\left(A_{1}, S\right)=1 . \text { Q.E.D. }
$$

THEOREM 2. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, E_{i}=\left\{x_{i}\right\}$, for $i=1, \ldots, n$ for A and E_{i} belonging ${ }^{\circ}$ to F. Then, for any A_{j} in F,

$$
p\left(A, A_{j}\right)=\sum_{i=1}^{n} p\left(E_{i}, A_{j}^{\prime}\right) .
$$

Proof:
$A=E_{1} \cup E_{2} \cup \ldots \cup E_{n}$, where the E_{i} 's are pair-wise disjoint.

Since $E_{1} \cap\left(E_{2} \cup \ldots \cup E_{n}\right)=0$, by axiom 5
$p\left(A, A_{j}\right)=p\left(E_{1}, A_{j}\right)+p\left(\bigcup_{i=2}^{h} E_{i}, A_{j}\right)$.
Since $E_{2} \cap\left(E_{3} \cup \ldots \cup E_{n}\right)=\hat{*}$, it follows
again by axiom 5 that
$p\left(A, A_{j}\right)=p\left(E_{1}, A_{j}\right)+p\left(E_{2}, A_{j}\right)+p\left(\bigcup_{1=3}^{D} E_{1}, A_{j}\right)$.
The same line of reasoning on be used re-
peatediy until we arrive at

$$
\begin{aligned}
p\left(A, A_{j}\right) & =p\left(E_{1}, A_{j}\right)+\ldots+p\left(E_{n}, A_{j}\right) \\
& =\sum_{i-1}^{n} p\left(E_{j}^{\prime}, A_{j}\right) \cdot \text { Q.E.D. }
\end{aligned}
$$

Corollary 1. If events or sets A_{i} 's in F are pair. Wise disjoint, for $1=1,2, \ldots .0 n$, then for A_{j} in $F, p\left(\bigcup_{1=1}^{n} A_{1}, A_{j}\right)=\sum_{i=1}^{n} p\left(A_{i}, A_{j}\right)$.

Proof:

In theorian 2, $\hat{A}-\bigcup_{i-1}^{\text {L }} A_{i}, A_{j}=\hat{A}_{j}, E_{i}=A_{i}$, for $1=1,2, \ldots, n$. By direct auborstution the corollary holds. Q.E.D.
corollary 2. Given A in F and sets A_{i} 's,

$$
\begin{aligned}
& i=1,2, \ldots, n, \text { which are pairwise disjoint } \\
& \text { and exhaustive subsets of } A \text {. Then } \\
& \sum_{i=1}^{n} p\left(A_{i}, A\right)=1 .
\end{aligned}
$$

Proof:

This ovidautly holds, by corollary 1 and axiom 2.

THEOREM 3. If. $A_{1} \subset A_{j}$, for nonempty sets A_{i} and A_{j} in $F, \quad p\left(A_{j}, A_{i}\right)=1$.

PrOOf:

$$
\begin{aligned}
& A_{j}=A_{i} \cup\left(A_{j} \cap \bar{A}_{i}\right) \text { which iumlies that } \\
& p\left(A_{j}, A_{j}\right)=P / A_{i} \cup\left(A_{j} \cap \bar{A}_{j}\right), A_{i} / . \\
& \text { But } A_{i} \cap\left(A_{j} \cap \bar{A}_{i}\right)=\emptyset \text { which implies, by } \\
& \begin{aligned}
\text { axiom } 5 p\left(A_{j}, A_{i}\right) & =p\left(A_{i}, A_{j}\right)+p\left(A_{j} \cap \bar{A}_{i}, A_{i}\right) \\
& =I+p\left(A_{j} \cap \bar{A}_{j}, A_{i}\right),
\end{aligned}
\end{aligned}
$$

by axiom 2. But by axiom $i_{i}, p\left(A_{j}, A_{1}\right) \leq 1$ and by axiom 3. $p\left(A, \cap \bar{A}_{1}, A_{1}\right) \geqslant 0$ winch implies that $p\left(A_{j}, A_{i}\right)=1$ Q.E.D.

THE FOUNDATIONS OF FINITE CONDIMONAL PROBABILITY

THEOREM 4 . For any sets A, B, and C in F,

$$
p(A \cup B, C)=p(A, C)+p(B, C)-p(A \cap B, C)
$$

Proof:

$$
\begin{aligned}
& A=(A \cap B) \cup(A \cap \bar{B}) \text {, where } A \cap B \cap \bar{B} \cap A=\emptyset \\
& B=(A \cap B) \cup(\bar{A} \cap B) \text {, where } A \cap B \cap \bar{A} \cap B=\phi \\
& \text { which implies by axon } 5 \text { that, } \\
& p(A \cap \bar{B}, C)=p(A, C)-p(A \cap B, C) \text { and } \\
& p(\bar{A} \cap B, C)=p(B, C)-p(A \cap B, C) . \\
& \text { But } A \cup B=(A \cap B) \cup(A \cap \bar{B}) \cup(\bar{A} \cap B) \text {, and these } \\
& \text { sets are also elements of } F \text { which are agr- } \\
& \text { wise disjoint. This implies, by corollary } 1 \\
& p(A \cup B, C)=p(A \cap B, C)+p(A \cap \bar{B}, C)+p(\bar{A} \cap B, C) \\
& =p(A, C)+p(B, C)-p(A \cap B, C) .
\end{aligned}
$$

Q.E.D.

THEOREM 5. For any B and A_{i} 's belonging to F,

$$
\begin{aligned}
& i=1, \ldots, n \\
& p\left(\bigcup_{i=1}^{n} A_{i}, B\right)=\sum_{i=1 .}^{n} p\left(A_{j}, B\right)-\sum_{\substack{j \neq j \\
1 \leq i, j \leqq n}} p\left(A_{i} \cap A_{j}, B\right)
\end{aligned}
$$

$$
+\sum_{\substack{i=j \pi k \\ 1 \leqq \subseteq \\ 1, j, k \leqq n}} p\left(A_{i} \cap A_{j} \cap A_{k}, B\right)+\ldots+
$$

$$
\begin{aligned}
& (-1)^{n} \sum_{\substack{i_{1} f^{\prime} i_{2} f \ldots f^{\prime} i_{n-1} \\
1 \leqq i_{1} \subseteq \leq n}} p\left(A_{i_{2}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{n-1}}, B\right\rangle \\
& +(-1)^{n+2} p\left(A_{1} \cap A_{2} \cap \ldots \cap A_{A_{n}}, B\right) .
\end{aligned}
$$

Proof: (By Mathematical Induction)

1. The formula vacuously holds for $n=1$.
2. Suppose the formula holds for $n=m$, then

$$
\begin{aligned}
p(K, B)= & \left.p\left(\bigcup_{i=1}^{m+1} A_{i}, B\right)=p /\left(\bigcup_{i=1}^{m} A_{i}\right) \cup A_{m+1}, B\right] \\
= & p\left(\bigcup_{1=1}^{m} A_{i}, B\right)+p\left(A_{m+1}, B\right) \\
& -p\left[\left(\bigcup_{1-1}^{m} A_{1}\right) \cap A_{m+1},\right.
\end{aligned}
$$

by theorem 4 .
3. Since the last term of the last equality involves a union of m terms, our hypothesis of induction applies, namely:

$$
p\left[\left(\bigcup_{i-1}^{m} A_{i}\right) \cap A_{m+1}, B\right]=\sum_{i=1}^{m} p\left(A_{i} \cap A_{m+1}, B\right)
$$

THE FOUNDATIONS OF FINITE CONDITIONAL PROBABILITY

$$
\begin{aligned}
& -\sum_{i \neq j} p\left(A_{i} \cap A_{j} \cap A_{m+1}, B\right)+\ldots+ \\
& 2 \leq i, j \leqq m
\end{aligned}
$$

$$
\begin{aligned}
& { }_{1}=1_{k}{ }^{\prime}{ }^{s}=m
\end{aligned}
$$

4. Substituting in (2), rearranging, and making use of our hypothesis of induction.

$$
\begin{aligned}
& p(K, B)=\sum_{i=1}^{m} p\left(A_{i}, B\right)+p\left(A_{m+1}, B\right) \\
& -\sum_{i=j} p\left(A_{i} \cap A_{j}, \dot{B}\right) \cdot \sum_{i=1}^{m} p\left(A_{i} \cap A_{p+1}, B\right) \\
& 1 \leq 1, j \leq m \\
& * \ldots+(-\ldots)^{m+1} p\left(A_{1} \cap A_{2} \cap \ldots \cap A_{m}, B\right) \\
& +(-1)^{m+1} i_{1} \sum_{2} \sum_{2} P\left(A_{m-1} i_{1} \cap A_{i_{2}} \cap \ldots\right. \\
& 1 \leqq \mathrm{j}_{\mathrm{K}}{ }^{\prime} \mathrm{S} \subseteq \\
& \left.\cap A_{j n \cdots 1} \cap A_{m+1}, B\right) \\
& +(-1)^{m+2} p\left(A_{1} \cap A_{2} \cap \ldots \cap A_{m+1}, B\right) .
\end{aligned}
$$

5. By combining like terns under the same summation sign in this formula, we shall have derived the equation in our theorem, for $n=m \cdot 1$ and hence we shall have proven that our formula holds for $n=m+1$ if we suppose that it holds for $n=r n$.

QED.
DEFINITION !. Given a sample space S, a field F of sub-
ests of S, and an event A belonging to F. The probability of the event A, denoted by $p(A)$ is its conditional probability given S. In formula notation, we have:

$$
p(A)=p(A, S)
$$

From this definition, the elementary theory of probability, ordinarily derived by considering the probability of an event as a primitive undefined notion, can be cstablished by a simple specialization of the axioms and the theorems that we have derived sa far. This speciaization is done by considering the conditional probability of an event A given S, the whole sample space, whenever a theoren or an axiom is applicable to this case. Thus, following this procedure, we have the following theorems which make up the ordinary elementary theory of probability:

```
THEORA 6. \(\mathrm{p}(S)=1\)
    \(0 \leqq p(A) \leqq 2\), for any \(A\) in \(P\).
    \(p(A \quad B)=p(A)+p(B)\), for any two dis joint
    events \(A\) and \(B\) belonging to \(F\).
```

Proof:
These immediately follow from definition 1
and Axioms 2-4.
We will not give a strict proof for the succecding theorems. These theorems evidently and logically follow from the theo rems previously proven and the given definition of the probability of an event.

THTOREN 7. For eny A in $F, p(A)+p(\bar{A}) \doteq 2$.

$$
p(\phi)=0 .
$$

THEORM 8. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, E_{i}=\left\{x_{i}\right\}$, for $i=1,2, \ldots, n$ for a and E_{i} belonging to F. Then $p(A)=\sum_{i=1}^{n} p\left(E_{i}\right)$.
corolimar 3. If events $A_{j}{ }^{1} s$ in F are pairwise disjoint for $i=1,2, \ldots, n$, then

$$
p\left(\bigcup_{i=1}^{n} A_{1}\right)=\sum_{i=1}^{n} p\left(i_{1}\right) .
$$

COROLLARY 4. If events A_{i} 's in F are pairwise disjoint, and exhaustive subsets of S, for $i=1,2, \ldots, n$, then $\sum_{i=1}^{n} p\left(A_{i}\right)=1$.

THEORDM 9. For any sets A and B in P,

$$
p(A \cup B)=p(A)+p(B)-p(A \cap B) .
$$

THEOREM 10. For any A_{i} 's belonging to F, for

$$
\begin{aligned}
& i=1,2, \ldots, n, \\
& p\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} p\left(A_{i}\right)-\sum_{i \neq j}^{\cdots} p\left(A_{i} \cap A_{j}\right) \\
& 1 \leq \bar{n}, j \leq n \\
& \therefore \ldots \dot{r}(-1)^{n+\lambda} p\left(\Lambda_{1} \cap A_{2} \cap \ldots \Omega A_{n}\right) \text {. }
\end{aligned}
$$

PHILIPPME STATISNICIAN - MARCH, 196?

7. Concluston. It would seem premature to end at this juncture but we are constrained to do so due to lack of time.

Up to this point. we have sel up our axiom system, shown the feasibility of adopting such a system by establishing its consistency and the independence of the particular axioms taken, and furthermore, we have derived the more important theorems consequent upon our axioms.

However, the wurk is still far from being complete. In the academic point of view, further investigation is still to be carted out as to whener other theorems can be derived, and most probably there are still others. And also anong other things, we have to consider independent events, ordinary probability distribution and conditional probability distribution on the elements of the sample space. And in the practical point of view, it is bul logical to study the applicability of this theory that we are trying to develop.

[^0]: *This paper is writton in partial fulfillment of an A.B. Honors Course degree in Mathematics z: $_{\text {: }}$ the Ateneo de Manila University, Loyola Heights, Quezon City.

