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THE FOUNDATIONS OF FINITE
CONDITIONAL PROBABILITY'"

Bv

Roberto S. Mariano

1. Introduction: The axiornatization of the theory of pro­
bability is not a new subject in mathematics. Many have tried,
and successfully so, to set forth in an axiom system the theory
or probability. However, in the majority of these attempts, the
concept of the probability of an event has been invariably con­
sidered as one of the primitive undefined notions of the axiom
system.

in this paper, we shall try to establish the axiomatic foun­
dation of the theory of probability concerning finite sample
spaces on a more general notion - that of the conditional
probability of an event. More general in that from the theory
developed with this concept as a primitive undefined notion,
we can easily derive the elementary theory of probability ordi­
narily established by considering the probability of an event
as one of the primitive undefined notions. The simple deri­
vation will be shown in the later part of the paper.

Also. as is natural for studies of this nature, some meta­
mathematical considerations of the adopted axiom system will
be given .

2. Primitive Notion. We consider the following as the pri­
mitive undefined notions of OUr axiom system:

1. The sample space. which we shall designate by a finite non­
empty set S.

2. A set of possible events. represented by F , a family of sub­
sets of S.

'. This PI1P~'I' is written in part.ial futfitlm,:nl. of an A.B. Honol3 Oourse
degree in Mathe-matics 'I: the Ataneo de :'I1aniln University, Loyola
Hreir:hts, QUI?7.on City.
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3. p., real-valued function pC A ,l\..) defined on F x F for A.
1 ) 1

and A. belonging to F . This real-valued function is what
)

we call the conditional probabili ty of A. given A.. It must
1 J

be noted that p(A., A,} I::; not necessarily equal to p(A.,A.).
1 ] ) 1

'. 3. Axioms. If S is the sample space, F a family of subsets
of Sand p a real-valued function defined on F x F , a set
function structure X = <S, F, p) is a finite conditional pro­
bability space if and only if:

I. F is a field. A family of sets, F is a field if and only if:

a. for A in F r the complement of A, A is also in F.

b. For n sets belonging to F , the intersection of any
number of these sets belongs to F.

c. For n sets belonging to F , the union of any number
of these sets belongs to F .

2. For any non-empty set A in F , p( A, A) = I.

J. For BnJT·t~lo sets Ai and Aj in 1", peAi' Aj ) : O.

4. p(A i , ~j) ~ 1 •

5. For two u~tually e~clusive sets, Ai and Aj in F,

p ( Ai U It j , A) ::; P( 1\i' A) + l? ( Aj , A.) , f or A in F.

4. Consistency of the Axioms, To prove the consistency of
the axioms that we have just set up, it is sufficient to show
that a model can be constructed where all these axioms arc
simultaneously satisfied.

Denoting the sample space by S, let S::: { a, b } ,

that is, since as we have. said before, we consider the sample
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space as a set of clements, we let .§l. and E be the dements

of the set S. Denoting by F . a family of subsets of S, let

F Ie {Al'~,A3,A4}, vhere A1 = {8 } ,

~ "" { b }, A
3'"

{ e, b }, A4 =t. Furthermore, for

Ai and A
j

belonging to F, let 8 real-valued fUnct.wn

P(Ai,A
j
) be defined on F x F such that:

p(Al'A1)
lC I P(A3,1'1) == 1

p(Al'~) 0 p(A; PP""2) = ].

P(Al'A3) = 1/2 p(A J,A3) = 1

P(A1,AL) = 0
p(A J,A4) = 0

p(A:2 ,AI) ::: a p(A
4,A1) == a

p(A2'~) == 1 p(A/:.,A:2) == 0

p(~ ,A
3) == 1/? P(A4,A3) = 0,

p(A:2 ,Ai) = 0 IP(A/+,A4) == a

•
F, the family of subsets of S, with the funct ion p(A. , A,)

I )

defined on F x F , is our model.

•

The first four axioms (Ire evidently satisfied by our model.
To show that axiom 5 is satisfied by this model, we have to
show that the formula in axiom five holds for the following
pairs of subsets of S,' which arc the only mutually exclusive
subse ts of S: A and A , ~ and A ,A and A ,A and A ,

l 2 t '1 2 4,J 4
A and A .

4 4
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For A1VI'2.' since I'IV!'?. = AJ ,

p(A1VA?,A
1)

- p(A
J,A1) ::: 1 ::: 1 + 0-;:: p(Al'A1) + P(Az,A1 ) ·

P(A1V A2,Az ) = p(AJ,A?) ~ 1::: C + I::: p(A1,Az) + p(A2,AZ)'

P(A
1VA2,AJ) "" P(AJ,A

J)
::: ) = 1/2 Y 1/2 = p(A1,A) + p(A2 ,A) .

p(A)\} A
2

, A,,) "" P(A),AL,) - 0 ~ Q ... 0 c p(Jl.1 ,A,) + PU~,tl,,).

For AJV At..' i =1, 2, 3, 1.., since I'IV.A'I .. iii

and P(A/':Ai ) = 0,

?(AiV A, ,A l ) '" P(Ai ,Al ) = p(A i ,AI) ·t· p(AL, ,t'l)'

P(AiVl'L.,!L::?) ::: p(A1 , /'2 ) ::: P("1''''2) + PUIL,I,;:).

P(AiVAL,A) c: P(Ai'AJ ) ::: pUI1,A)) + P(AL.,A 3) .

p(A i U At.,A!.) == P(l\i,A,) ~ p(Ai,I\) + P(A,,' A,) .

from these above equalities W~ see that the formula in

axiom 5 holds for the above mentioned pairs of mutually ex­

clusive subsets of S. Since commutativity holds for the union

of t wo se ts , that is, for I \\'0 sets ;\ and B. A IJ B :=; B U A,

axiom 5 also holds evidently for the commuted forms of the

unions of the above mentioned pairs.

5. Independence of the A.."iOl11s. In order to establish the
independence of a particular axiom in our system we have
to construct a model which simultaneous satisfies the nega­
tion of that particular axiom and also the four other axioms.
We shall do that now for each of our five axioms.

To show the independence of axiom '1 in our system, let

JUT model be the following:
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1- F1 ={Al,~,AJ} 1 ~ith Al, ~, and AJ as defined

before,

2. A function f(A1,A j ) dofined on F1xF1 such that;

f( Al'A1) =1 f( ~ ,AJ ) = 1/2

f(Al,A-~) ::. 0 f(AJ,A 3
) e 1

f(Al'A J) = 1/2 f(A3'~) = 1

f(A
2,A1)

:;: 0 f(A" A1)
:: 1

Evidently, the second, third, and fourth axioms and the nega­
tion of the first are satisfied by this model. The satisfaction
of the fifth axiom is verified in the pertinent equalities con­
wined in the later part of the previous section.

To verify the independence of axiom 2, let our model in
this case be the following:

1. F ) a family of subset s of S as defined in the previous
section, and

2. A real-val LIed function defined on F x F, denoted by

gl( A I A ), FOI- ,A, and A. in F , whose values are the same
1 j i i

as those of p(A,. A,) bu: for the following;
1 )

g(A1,A1) Il:l 2/3 g(A 3,A2} :: 2/J

g(A2'~) lEi 2/3 g(A1,A3) :: 1/3

g(A3,A J ) IIll: 2/:3 g(~,A3) ::: 1/3

g(A3,A1)
::::: 2/3

2:1
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Again it is evident that the first, third, and fourth axioms
and the negation of the second are satisfied by this model.
noting that

g(A3,A1) = g(A11J A2-) AI) = 2/3 -= 2/3 + 0
,

= g(A1,A1) + g(~,Al)'

g(A3'~) = g(JI1v A2 , ·1l? ) :: 2/3 = 2/3 + 0

=. g(~,~) + g(Al'~)'

g(AJ,AJ ) = g(AIV~,AJ) = 2/3 = 1/3 + 1/3

= g,,(Al'AJ) + g(A2 ,A
3),

and referring to the pertinent equalities in the previous section,
we see that this model also satisfies the fifth axiom.

In the case of the third axiom, let our model be the
following:

1. F , a family of sunsets of S whose elements are as defined
before.

2. :\ real valued function defined on F x F , h(A .. A.), for
1 J

A. and 1\. in F , whose values are the same as those of
\ )

p(A .. A,) hut for the following:
1 J

h(A ,A.) = -1
1 4

h(A A)' = -1
2' 4

hfA ,A) = -2.
3 '1
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Evidently, the first, second, and fourth axioms and the nega­
tion of the third are sastified by this model. The pertinent
equalities in the previous section and the fact that

h(A1VA:2 ,A
4)

b' h(A
3,A4)

= -2 = (-1)? (-1)

=h(A1,A4) + h(~gA4)'

show that the fifth axiom is S3 tisfied by this model. These
facts establish the independence of the third axiom in our
system.

To show the independence of axiom 4 in our system, let
our model be the following:

I . F . a field or subsets of S as defined before.

2. A real-valued function defined on F x F . \I( A.. A. ), for
I )

A. and A. in F, whose values are same as those or
I . J

p(A.,AJ but for the following:
1 J

u(A ,A ) - 2
1 4

u(A ,A ) 2
2 4•

u(A ,A ) = 4.
3 4

By inspection. we see that this model satisfies the first three
axioms and the negation of the fourth. Noting the equalities
in the previous section and the fact that

U(A1U~)A4)'- tt(A3,A4) = /., =<2"+:2

.- u(A1,A,) + u(A2,A4) J

we also SCI: that the fifth axiom is satisfied .

.) .
_0
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To prove the independence ufaxiom 5 in OUr system, let

the following be our model:

1. The same F and S :1S in the previous cases,

2. A real-valued function \'(1\,,1\) defined on F x F for any
1 )

,\ and ;.\ in F , whose ",'dues are the same ..1S those of
j j

rCA"A,) except for the fullowing.:
1 )

.'I v (A ,A) := r.
3 :1

This model satisfies the first four axioms, as can be verified
by an inspection of the values of the fuction defined. Further­
more, since

the negation of the fifth axiom is satisfied by the model and
• hence the independence of the fifth axiom in our axiom system

is established.

6. Consequences of the Axioms. Let us now consider t11(:
theorems that we can infer from the axioms. Unless other­
wise stated, we shall presuppose as given in all these theorems
a finite non-empty sample space 5, a Iield of subsets of S, de­
noted by F , and n real valued function p(,\" A,) defined on

) )

F x F Cor and '\, and i\ in F.
1 j
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THEOREM 1. For any Ai in F,

pC~,Ai) :: 0 and P(Ai,S) + peAl'S) :: 1

Proof:

a. Since for any Aj in F', AjV $ = 1\j and

Ajr'l t ::~, then, by axi om 5

P(A j V ~ ,Ai) z: P(Aj,A i ) :: P(Aj,A i ) + P(~,Ai)

vh i ch implies that P(9,A) :: '0, for the last

equality to hold. Q.E.D.

b. Since A.V Ai == S and A.. n A. = ~J1 _ ~ 1

p(AiU Ai'S) :: p(S,S) ~ P(Ai,S) + p(Ai,S),

by axiom 5. But b:{ axiom 2, peS, S) := 1 I

THEORE1'1 2. Let A:= { xl'xz, . · · ,xo }, Ei ={Xi} ,

for i;;: 1, .. o,n for A and E. belonging'
~

to F. Then, f'or""any Aj in F,

n
p(A,A j ) =' 'i. P(l<:i JA'.),":.... J'i-.1. .~

28
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proof:

A :: E1.V E2\J ..•V~' vhere the '£1 IS are

pair-~ise disjoint.

Since E1 (\ (~U •••V~) = ~, by axiom 5
h

p(A,Aj):c: P(EpA j ) + p(U ~,Aj)'
i ...2

Since ~ rl(E; U ... U~I) ::: $, it follows

again by ax i.crn 5 that
n

p(A,A j ) =: P(E1,A j ) + p(E2 , Aj ) + P(h!3EiIAj)'

'the same line of reasoning can be used re-

peated1y until we arrive at

Q.E.D.

•
roROLLARY 1. If events or se-ts Ai I S in F are pair­

. 'Wise dis joint, for 1 = 1,2)O •• n I then rcr

n n
Aj in F, p(U ~,Aj) =)' P(ApA j ) .

iD1 M

Frear:
L-

In theorQn 2, A _. U ~' :OJ ... 1'.j' 1::1 .,. Ai'
1-1

for i l: 1~2,.4t,D. By dlrQct aub8~itutioo

the oorolliry bol&. Q,E.D.

:I9
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COROLLARY 2. Given A io F' and sets I\i's)

i ::: 1,2, 0' o,D} vhacb are pair""ise disjo:i.nt

and exhaustive sube ets of A. Then

n

2:: P(Ai' A) :0: l.
1=1

. Proof;

This evi.dent Ly holds, by corollary 1 and

axiom 2 0

T}iEOREH ). I r Ai C 11 j J 1'OT non-empty sets Ai and

Aj in F, rlAjJAi) =1.

Proof:

Aj ::: AiV(Aj("A i ) 'Which :I.wpJ.iGS that
r -

( )
. I v( (. -) /p/l"Aj =P/Ai A,,\}~, ,A,/

J. t. J 1 ~
I

But Air\(A/'\ Ai) =, <to •..-hidl iIl1pHe~~J by

a x i om 5 p (11 . J Ai) = p( A. 1/1') + P ( II.t> A, I Al' ).1 1 J. J 1

= 1 + P(Aj"A j ,Ai)'

by axf.om 2. But by axiom /. j P(Aj}A i ) ~ 1

and by axdoiu 3 plA j (\Ai }lIl ) ~ 0 ....hich

implies tha \, P(AjJAi ) ::: L Q.E.D.
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THEOREM 4. For any sets A, B, ~Qd C in F,

p (II U B, C) = P ( A, C) + P ( 8 , C) - p ( lJl B, C) .

Proof:

A :; (A('\B)U (A (YS) , vher-e AngnEi\A:; ~

B ~ (A(\. B) U(i\{\B) I •....here A(\.sr.7J'B = 9

....h i.ch implies by axiom 5 ths t I

p(P: n B,C) = p(B,C) p(h(\B,C).

BU~ AVB:; (A("'\B) V (AnB) V(i;(\.B) , and thes e

sets' are also elem6nt~; of F ·....hich ere [.Jsir-

v i s e dis joint. This irr.plies, by cor-oI'Iar-y J

p(AUB,C) :: p(A(\B,C) + p!A(\.S,C) + p(AflB,C)

c p(A,C) + p(B,G) ~ p(AnB,C) ..

Q.E.D.

THEORE}l 5. For any

i :: 1, ••• , n

B and A. rs belonging
a

to F,

- ~ P(A. n A. I B)
.. i J
1. J

l~i, j-;n

•
."'1 ;
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+ L peAi (\A5",Ak , B) -} ••• +
i=j"k

l~i) j )~n

\_l)n L p(l\o (\ Ai {\ .•• {\A i ,B)
il\~f .. .1\1_1 1 1 '2 n-l

l?ii '~n

n+l
+ (-1) P(A1(\A;:rI"'()"n,B).

Proof: (By ~~theIDatical Induction)

1. The I'ormu'l a vacuous Iy holds for n =1.

2. Suppose the I'ormula holds j\)10 n::. m, tiler)

m

-;:: p\ UAi,B) ;. p\"m+l,B)
in1

by theorem 4.

3. Since the last term of the last equality in ...

volves a lillian of rn terms, our hypothesis

of inducti on applies, name.ly:
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"i p(A.n .0..(\ A l' B) + .,. +
i7j 1 J "In+

l~i, j;Ill

P(Ai
1

iIt-12f. • .jim_J
l::ik ' s =m

4. Substituting in (2), rearranging, and making use of our
hypothesis of induciion

m
p (1\ , B) = L p ( Ai) B) + P(Am+l' B)

i=l

m+1 ( n)~ ... + (-1') peAl )AI'." Am' B

m+l ,-'+ (-1) / P(A. (\. A. II ...
. ~. ~~ ~. 1 1 1 2).lrJ.2T · •• 7 lm_l -

1 . , e:
~)'1; s:;;.n

rn+2 n+ (-1) p(P.{" Ai •.. rlPm+l' f3).

!). By combining like terms under the same summation
sign in this formula, we shall have derived the equation
in our theorem, For n= m -t- 1 and hence we shall have
proven that our formula holds for 11 == 111 + I if we
suppose that it holds For n = rn.

Q.E.D.

DEFINITION I. Given a sample space S, a lield T' of sub-
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ests of S, and an event A belonging to F . The probability
of the event A. denoted by pf A) is its conditional proba­
bility given S. In formula notation, we have:

peA) ::= peA,S).

From this definition, the elementary theory of probability.
ordinarily derived by considering the probability of an event
as a primitive undefined notion, can be established by a simple
specialization of the axioms and the theorems that we have
derived sa far. This speciaizm icn is done by considering the
conditional probability or an event A given S. ths whole sample
space, whenever a theorem or an axiom is applicable to this
case. Thus, following this procedure, we have the following
theorems which make up the ordinary elementary theory of
probability:

THEOfIDi 6. p(S) = 1

o < ptA) < 1, for any A in F.
c c::

ptA B) =peA) + p( B), for any two dis joint

events A and B belonging to F ,

Proof:

These immediately follow from definition

and Axioms 2 - 4.

We will not give a strict proof for the succeeding theorems.
These theorems' evidently and logic~llly Follow from the thee­
rerns previously prOV~!1 arid the given definition of the pro­
bability of an event.

THEORE1..l 7. :For any A in F; peA) + peA) - 1.

p(~) ~ o.

34
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THEOREI·j 8. Let A::: { xl' x2' • • • , ><n } , E. z: {Xl' } ,
1

for i=1.,2,· ... ,n for A
n

8.l1c1 Ei belong­

ing to F.. Then p(A) ~ ~ p(Ei)·
i:::l

COROLLARY J. If events A ("i k'
in Fare pain-Jise

•
disjoint, for i::: 1,2, .. " n, then

n n
p(~}/i.) = i~l p(j~) .

disjoint, and exhau-stive subsets of S, for

i:: 1,2'0 •• ,11, then

•

•

THEOREH 9. For any sets it and B tn F,

p(AUB) = p(A) + p(B) - p(A(\B).

THEORD·\ 10. For any Ai \ S belonging to F, for

i::: 1,2, ... , n,

. I )11+1 . A t'\ 1\.)
..;. "I" \ - J. P(" All I A2' I •• "V\n .
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7. Conclusion. It would seem premature to end at this
juncture but we are constrained to do so clue to lack of time.

Up to this point. we have set LIp our axiom system, shown
the feasibility of adopting such a system by establishing its
consistency and the independence of the particular axioms
taken, and furthermore, we have derived the marc important
theorems consequen t upon our axioms.

However, the work is still far fnlln being complete. In
the academic point of view, further investigation is still to be
carried out as to whether other theorems C,1I1 be derived. and
most probably there ~in: still others. And also muong other
things, we have to consider independent events, ordinary pro­
bability distribution ann conditional probability distribution
on the elements 0(: the sample space. And in the practical
point of view, it is but logical to study the applicability of this
theory that we art;' trying to develop .
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