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CONDITIONAL PROBABILITY *
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Roberto S. Mariano

1. Introduction: The axiomatization of the theory of pro-
bability is not a new subject in mathematics. Many have tried,
and successfully so, to set forth in an axiom system the theory
of probability. However, in the majority of these attempts, the
concept of the probability of an event has been invariably con-
sidercd as one of the primitive undefined notions of the axiom
system,

[n this paper, we shall try to establish the axiomatic foun-
dation of the theory of probability concerning finite sample
spaces on a morc gencral notion — that of the conditional
probability of an event. More general in that from the theory
developed with this concept as a primitive undefined notion,
we can casily derive the elementary theory of probability ordi-
narily established by considering the probability of an event
as one of the primitive undefined notions. The simple deri-
vation will be shown in the later part of the paper. .

Also, as is natural for studies of this nature, some meta-
mathematical considerations of the adopted axiom system will
be given,

2. Primitive Notion. We consider the following as the pri-
mitive undefined notions of our axiom system:

1. The sample space, which we shall designate by a finite non-
empty set S.

2. A sct of possible events, represented by F |, a family of sub-
sets of S,

* This paper is written in pariial fulfillment ol an A.B. Honors Course
degree in Mathematics a: the Ateneo de Manila University, Loyola
Heights, Quezon City.
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3. A rcalvalued function p(A A) defined on F x F for A
1)

i
and A bclonging to F . This real-valued function is what

]
we call the conditional probability of A given A_. It must
1 J

" be noted that plA, A ) is not nccessarily equal to p(A,A ).
. i joi

’ 3. Axioms, If S is the sample space, F a family of subsets
of S and p a realwalued function defincd on F x F, a set
function structure X = (S, ¥, p)is a finite conditional pro-
| bability space if and only if:
e
l' 1. F is a field. A family of sets, IF is a (ield if and only if:
: a. For A in F , the complement of A, A is also in F.

b. For n sets belonging to F , the intersection of any
number of these sets belongs to F.

: ¢. For n sets belonging to F , the union of any number
l‘hg; of thesc sets belongs o F .
a3

2. For any non-empty sct A in F |, p(A,A) = 1.

3. For any-tuo sets 4y and A, inF, P4y, AJ) > 0.
1;. p(Ai’ Aj) g 1,

5. For two mutually exclusive gets, A, and Aj in F,

p(f\iU flj’-“-) = p(Ai)A) + P(Aj:A): for & in F.

4. Consistency of the Axioms., To prove the consistency of
the axioms that we have just set up, it is sufficient to show
that a model can be constructed where all these axioms are
simultancously satisfied.

| Denoting the sample space by S, let S ={a,b},

that is, since as we have said before, we consider the sample
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space as a set of elements, welet  a and b be the clements

of the set S. Dcnoting by F , a tfamily of subsets of S, let

F‘(AI’AZ’AB’AA)’ where Alz{a},
Azu{b}, AB::(a,b), AA=¢. Furthermore, for
Ay and A3 belonging to F, let a real-valued function

p(Ai’Aj) be defined on F x F such that:

p(Ay,4;) = 1 p(Byrhy) = 1
p(Ay,h) = O p(ay,hy) = 1
P(Al,AB) = 1/2 p(AB,AB) =1
p(ays8,) =0 p(8q:4,) =0
p(Ay,4,) = 0 p(A,shy) = 0
plAy,hy) = 1 p(AA,A2)>= 0
plhysh,) = 1/7 p(AA,AB)‘= 0,
p(hy,4,) = 0 ip(hys8) =0

F , the family of subsets of S, with the function p(Ai, Aj)

defined on F x F , is our model.

The first four axioms are evidently satisfied by our model.
To show that axiom § is satisfied by this model, we have to
show that the formula in axiom five holds for the following
pairs of subscis of S, ‘which are the only mutually exclusive
subsets of S Al and Ao‘ A and Ad' Ao and A4, A3 and Af

[§
A and A .
4 4

~o
o
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For Al\JA,,, since /\1U,AQ=A3,

~

i}

p(AIUf\?_yAl) - p(AB’Al) =1 =1 + O P(Aerl) + p(AQJAl)'

4
oy
U
(&}
-+
[}
i

Ip(AIU kystp) = plAghs) = play,ag) + plhy,a5).

[t
-
it
o
~
he)

p(AIUA2,A3) = p(AB,ftB) = 2 v 1/2= p(ﬁ‘l’AB) + p(Az;A3)~

| ]
<o
1
o

PUAV figshy) = DlAgIR,) + 0 plhy,k,) + Uk ).

For Az}J Aps 1=1,2, 3,4, sipce AIU.A/‘ = Ay

and p(',‘/.,/ﬁi) =0,

p(aV Az,’Al) = p(Ai,Al) = p(Ai,l\l) + p“‘z,""])'
p(hiu}‘[‘,[\?)

p(Ai,/\Q) F‘(Ai,:'r.:z) + D(AL;A‘?)-
P(AV B, sA3) = P(AGA,) = LAy, &)+ PLA,AS).

p(Ay U Ash) = PLAgA, ) = PUALA) + PLALLA ).

From these above equalitics we sece that the formula in
axiom 5 holds for the above mentioned pairs of mutually ex-

clusive subsets of S§. Since commutativity holds for the union
of two sets, that is, for twosets Aand B, 4 B = BU A&,

axiom 5 also holds cvidently for the commuted forms of the

unions of the above mentioned pairs.

5. Independence of the Axioms, In order to establish the
independence of a particular axiom in our system wc have
to censtruct a model which simultaneous satisfies the nega-
tion of that particular axiom and also the four other axioms.
We shall do that now fer each of our five axioms.

To show the independence of axiom 1 in our svstem, let
yur model be the following:
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Fy = {Al,Az,AB }, with &), 4, and A, es defined
before,

2. A function I‘(Al,Aj) dafined on leFl such that:

£(8),49) = 1 f(Ay,44) = 1/2
£(ay,8,) = 0 f(A3,4) = 1
f(Al,ABJ = 1/2 f(AB,AQ) =1
f(AQ,Al) =0 f(Ag,Al) =1

Evidently, the second, third, and lourth axioms and the nega-
tion of the first arc satisfied by this model. The satisfaction
of the Ffifth axiom is verified in the pertinent equalitics con-
tained in the later part of the previous scction.

To verify the independence of axiom 2, let our model in
this case be the following:

1. F, a family of subsets of $ as defined in the previous
section, and

2. A real-valucd function defined on F x F , denoted by
;D(A A ), for A and A in F, whose values are the samec

J 1
as those of p(A , A ) but for the following:
)

g(Al’Al) = 2/3 g(Aj’AZ) = 2/3'
g(hyyhy) = 2/3 g(8y,84) = 1/3
glfy hy) = 2/3 g(hy,hs) = 1/3

g(AB’Al) = 2/3
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Again it is evident that the first, third, and fourth axioms
and the negation of the second are satisfied by this model.
noting that

i

g(Aq,09) + gliy,n4),
gV Ay 85} = 2/3 = 2/3 + 0

~g(A2;A2) + g(Al’AZ)’
g(Ag,04) = glayUhy ) = 2/3 = 1/3 + 1/3

g(AB’AQ)

1

gﬁAl,A3) + g(AZ’AB)’

and referring to the pertinent equalities in the previous section,
we sce that this model also satisties the fifth axiom.

In the case of the third axiom, let our model be the
following

1. F, a family of subsets of S whose clements are as defined
before.
2. A real valued function defined on F x F, (A A ), for
1
Ai and A’, in F, whose values are the same as those of

p(A_, A) but for the following:
i

h(A A) = -1
1(1 4)

hia A) = -

hAga !

hi(A A) = -2
3 4
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Evidently, the first, second, and fourth axioms and the nega-
tion of the third are sastified by this model. The pertinent
equalities in the previous section and the fact that

h(AIUAQ:AA) i h(AB,Az&) = - 2 = (" 1) s (" 1)
= h(Al’A/J + h(AQyAA);

show that the fifth axiom is satisfied by this model. Thesec
facts cstablish the independence of the third axiom in our
systemn,

To show the independence of axiom 4 in our system, let
our model be the following:

1. T, a field of subscts of S as defined before.

2. A realvalued function defined on Fx F, u(A_ A), for
1
A and A, in F, whose values are same as those ol

! ]
p(A_, A ) but for the following:
1]
uwA LAY = 2
t 4

wA LAY = 2
2 4

A LAY = 4,
ulag,a)

By inspection, we see that this model satisfies the first three
axioms and the negation of the fourth. Noting the cqualities
in the previous section and the fact that

Ll(A';UAz,AZ() = U'(AB’AA) =4=2%2
= u(Al’A/;) + u(AQ)AA,):
we also sce that the fifth axiom is satisfied.
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To prove the independence of axiom 5 in our system, let

the following be our model:

}. The same F and $ as in the previous cases,

2. A rveal-valued function v(A | A)defined on F x F for any
LD
A and A in F, whose values are the same as those of

i
p(A ,A) except for the following:
1)

wlA LAY =
77y

This model satisfies the first four axioms, as can be verified

by an inspection of the values of the fuction defined. Further-
more, since

V(-A-l&«)AQ)A[‘,) = V(AB,A4) = 1

£ /v ¢ vy, = o/,

th¢ negation of the fifth axiom is satisfied by the model and
hence the independence of the fifth axiom in our axiomn system
is established.

6. Consequences of the Axiomns, Let us now consider the
theorems that we can infer from the axioms. Unless other-
wise stated, we shall presuppose as given in all these thcorems
a finite non-empty sample space S, a field of subsets of S, de-
noted by I’ , and a real valued function D(Ai'Aj) defined on

F x F forand A and A in F.
1 J

27
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THEOREM 1, For any A; in F,
p(¢,4;) = 0 end p(A,S) +p(A,8) =1
Proof:
a. Since for any AJ in ¥, AJ\J ¢ = AJ and
Ajf\¢ = 4, then, by axiom 5
p(agU o800 = plag,a,) = plag,a,) + 0(4,4,)
which implies that p(¢,4;) =0, for the last
equallty to hold. Q.E.D.
b. Since A JA =85 and AN A =4,
p(A)J & ,8) = p(s,8) = p(ag,8) + p(Ay,8),
by axiom 5. But by axiom 2, p(S, 8) =1,
which implies that

P(Kixs) + p<Ai:S) =1, Q.E.D.

THEOREM 2. Let A = (xl,x2,...,xn}, E =(xi)
for i=1,...,n for A and Ey belonging®
to F. Then, for any Ay in F,

gﬁ
2, p(E ,A
- T
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Proof':
A= E\V Ezk)...k)En, were the E's are
pair-wise disjoint,
Since Elf\ (ELZU ...UEn) =4, by axiom 5
p(aup) = BELAD + () Bk,
| Since E,M(E;\V...UR) =¢, it follows

\d again by axiom 5 that
n
P(AsA,) = p(E{,A) + p(By,A ) + P(UE syAy).
j 104y 2044 s M
The same line of ressoning osn be used re-
peatedly wtil we arrive at
P(A,AJ) = p(El’Aj) v oLe. t p(E‘n’Aj)
n
= ) p(E(A). QED.
i1
COROLLARY 1., If eovents or setis Ai's in F are peir-
o
-wise disjoint, for 4 = 1,2,,,.n, then for

n

n
Aj in F, P(\nj A’i’Aj) = ;} p(Ai’Aj)'
i=1
Froor:
In theoran 2; A& =~ }:é Ay hy = Aj’ By = Ay,

for 4= 1;2,,..,n. By dirset subs€itution
the corollery holds, Q.E,D,
19
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COROLLARY 2., Given A in F and sets ay's,
i=1,2,.,.,n, which are pairwise disjoint

and exheustive subsets of A, Then

n

Y p(hg,a) = 1.
i=1 1

This svidently holds, by corollary 1 and

axiom 2,

THEOREM 3. 1f A1C1A1, for non-emply sets Ai and

Aj in F, p(Aj,Ai) = 1,

Proof':
Ay = AiU(AJﬁE\i) which implies that

e osrign ]
—— s

)
But Ai(’\(njf‘\ A;) = ¢ which dmplies, by

n

axtom 5 p(Aj’Ai) PLAL Ay

s) p(Ajf\Zi, Ag)

N

1+ plaNAy LA,

by axiom 2. But by exiom /4, p(A ’Ai) <1

J
and by axiom 3 p(Ajf\Ki,Ai) 2 0 which

impligs thav p(AJ’Ai) =1. Q.E.D.
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THEOREM 4, For any sets 4, B, and C in F,

Proof:

p(aJ B,C) = p(a,C) + p(B,C) - p(£NB,C).

A= (ANB)U (ANB), where ANBNENA

n
-

n

B = (ANB)U(ANB), where ANBNANE =

{
<=

which implies by axiom 5 that,

t

p(aMN B,C) = p(a,0) - p(aNB,C) and

p(A N B,C) = p(B,C) - p(aNB,0C).

But AUB = (ANB)U (aNB) U(ENB), and these
sets are also elements of F which sre pair-
wise disjoint. This 1mplies, by corollary 1
p(AUB,C) = p(ANB,C) + p(aNB,C) + p(ANB,C)

= p(4,C) + p(B,C) - p(ANB,C).

THEOREM 5, For any B and Ai's belonging to F,

i=l, cery I

n n,
,B) = L.,B) - p(a.NA,, B)

Iy

154, 3<n
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+ 2 Pl NANALE) + Lo #
i:juk
1gi,J,ksn
("l)n . Z , p(Al m Ai {\I Y (\Ai ,B)
ST YARRPE N S n-1
1§ii‘s§n

+ (-1 p(aNA; N NA,B) .

(By Mathemstical Induction)
The formula vacuously holds for n = 1,

Suppose the formula holds {or n = m, then

] w 7
p(K,B) = p(i%p.i,s) = P_/E}_/lf*i)u Apers B
m
= p(HAi’B) ¥ P(f\m.;.le)

m —
. /

A )NA B/,
pZ/Zt:{ i) . m+l} E/

by theorem 4,

3, Since the last term of the last eguelity in-

volves a union of m terms, our hypothesis

of induction epplies, namely:
m 7 n
p/z}_lei)ﬂ Ao B/ = 52;1 PLANY AL 4,B)

32
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- i% p(8;NVANA 1y B) + .

1§i s JSm

m

(-1)
ilfizf...fim_l
lzik's___m

4. Substituting in (2), rearranging, and making use of our
hypothesis of induction.

m
p(K,B) = 2, p(a;,B) * pla,1,B)

i=1
n
.L=J 1=,
1<1, j<m >

e+ (1™ pa NN LN, B)

e S 17 VoV W o O
117{127("'711171-1 12
1<i,y, ‘8L
=% "=

4 (»1)er2 }>(ﬂ.lf\A2ﬂ---f\!\n+l; B).

5. By combining like terms under the same summation
sign in this formula, we shall have derived the equation
in our thcorem, for n= m - | and hence we shall have
proven that our formula holds for n = m -+ 1 if we

suppose that it holds for n = m,
QED.

DEFINITION 1. Given a sample space S, a field I of sub-
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ests of S, and an cvent A belonging to F . The probability
of the event A, denoted by p(A) is its conditional proba-
bility given S. In formula notation, we have:

p(A) = p(A,S).

From this definition, the elementary theory of probability,
ordinarily derived by considering the probability of an event
as a primitive undefined notion, can be cstablished by a simple
specialization of the axioms and the theorems that we have
derived sa far. This speciaization is donc by considering the
conditional probability of an event A given S, the whole sample
space, whenever a theorem or an axiom is applicable to this
case. Thus, following this procedure, we have the following
thecorems which make up the ordinary elementary theory of
probability :

fl

THEORRM 6. p(S) = 1

}, for amy A in F.

0 < plA)

p(a B) = p(a) + p(B), for any two disjoint

nh

events A and B Dbelonging to V.

Proof :

These immediately follow from definition |

and Axioms 2 — 4.

We will not give a strict proof for the succecding theorems.
These theorems cvidently and logically follow from the theo-

rems previously proven and the given definition of the pro-
bability of an event.

THEOREM 7. For eny A in F, p(a) + p(R) = 1.

p(¢) = 0.
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THEOREM 8. Let A ={x1,):2,...,xn), E. = { x

for 1=1,2,.,.,m for A and Ei belong-

n M:ﬁ
tx;

ing to F, Then p(4)

COROLLARY 3, If events A;'s in F are pgirwise

disjoint for i = 1,2,..., n, then
n n

p(\JAy) = 2, ply).
izl v 1=l

COROLLARY 4. If events 4,!'s in F are pairwise

i

disjoint, and exhaustive subsets of S, for
Ql
i=1,2,¢.4,n, then }_ pla) =12
THEOREM 9. For any sets A4 end B in T,
p(AUB) = p(a) + p(B) ~ p(ANB).

THEOREM 10. For any Ai*s pelonging to F, for

1=1, 2,
)
p(\/ Ay) 5: p(ay) - »p(a DAY
= iR >7j b
1<, jn
04l

S ... e (=)

P(Alf\ Agﬂ..f\kn)‘
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7. Conclusion. It would seem premature to end at this
juncture but we are consirained to do so due to lack of time.

Up to this point, we have set up our axiom system, shown
the feasibility of adopting such a system by establishing its
consistency and the independence of the particular axioms
taken, and furthermore, we have derived the more important
theorems consequent upon our axioms.

However, the work s still far {rom being complete.  In
the acadernic point of view, further investigation is still to be
carried out as to wherther other theorems can be derived, and
most probably there are still others. And also cinong other
things, we have to consider independent events, ordinary pro-
bability distribution and conditional probability distribution
on the elements of the sample space. And in the practical
point of view, it is but logical to study the applicability of this
theory that we are trying to develop.
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